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Abstract: Differentially substituted indoiocarbazoles are readily prepared via a 
synthetic route employing two palladium catalyzed reactions. First, biindoles are 
prepared from a palladium catalyzed cross coupling reaction. Second, a new palladium 
catalyzed benzannulation reaction employing biindolyl iodides and alkynes provides 
indolocarbazoles. © 1997 Elsevier Science Ltd. 

Indolocarbazole natural products belong to an interesting structural class and often possess potent 

biological activities including antitumor and protein kinase C inhibitory properties. 1 A few structures 

representative of naturally occurring indolocarbazoles are shown in Figure 1. Most feature an indolocarbazole 

core with a centrally fused lactam or imide ring and N-glycosylation. Their novel structures and significant 

biological activities have prompted many synthetic efforts directed toward the synthesis of the natural products 

and their structural analogues. 2 Even with the apparent simplicity of the indolocarbazole aglycone, numerous 

diverse approaches to this ring system have been devised; each with their particular attributes. 2 We report 

herein new indolocarbazole syntheses employing sequential palladium catalyzed reactions for efficient 

construction of differentially substituted products. 3 
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Palladium catalyzed arylations4 have become increasingly common and cyclizations employing 

intramolecular alkyne insertion coupled with arylation were recently reported.5 We envisioned a new 

palladium catalyzed benzannulation reaction using a 2-halobiaryl and an alkyne coteactant such that oxidative 

addition, alkyne insertion and arylation would create a new aromatic ring. Thus, our synthetic plan for the 

preparation of indolocarbazoles employs initial cross couplings of indoles to provide functionalized 2,2’- 

biindolyls and then new benzannulation reactions via alkyne insertion to complete the central benzene ring of 

indolocarbazoles (Scheme 1). 

Scheme 1 

The initial goal was preparation of 2,2’-biindolyl iodides which would serve as substrates for the 

benzannulation reactions (Scheme 2). Indole was iodinated at the 2-position using the procedure of Bergman 

and Venemalm6 and then N-protected. Suzuki cross coupling7 of the in siru generated boronic esters 4 and 2- 

iodoindole, 2, provided unsymmetrical 2,2’-biindolyls 5. 8.9 The reaction is sensitive to the nature of the 

indole protecting group @a, SC vs 5b, Sd) although the reasons are not clear other than the possibility of 

insertion in the case of the ally1 group. Stille cross-coupling reactions’0 using indole tin reagents are 

successful, but result in lower yields. A Negishi cross-coupling1 * employing the zinc analogue of 4 failed due 

to deprotonation of 2 by the indolezinc intermediate. Iodination at the 3’-position using the procedure of 

Bocchi and Pallal followed by N’-protection yielded iodide substrates 6. 
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Using iodides 6, we next explored their use in palladium catalyzed benzannulation reactions (eq 1-3). 

Reaction of 6a with three equivalents of DMAD, 10 mol % Pd(PPh3)4, and one equivalent thallium carbonate 

in toluene yielded indolocarbazole 7 in 54% yield. 13 The product was readily identified by the doublet at 8.21 

ppm in the IH NMR spectrum for the bay region proton. Methyl beptynoate gave a comparable yield of the 

unsymmetrical indolocarbazole 8. 

10% Pd(PPh3)4 
1 eq TI2CO3 PhMe 

Ka 7 R =COOMe 54% 
8 R=Bu 56% 

(1) 

Unsymmetrical biindolyl iodide 6b provided similar yields of benzannulated products, but somewhat 

surprisingly, the reactions were only low to modestly regioselective (eq 2). The products were not separable, 

and thus the structures of the major regioisomers could not be assigned, but the ratios of products were readily 

determined from the IH NMR spectra. The regiochemistry of benzannulation is set by the regiochemistry of 

initial alkyne insertion. While alkene insertions are generally quite selective, 14 alkyne insertions can be much 

less so and are generally dominated by steric considerations of the alkyne reactants. 15 

M ~  R 

Bn Me 10% Pd0aPh3)4 

1 eq TI2CO3 PhMe 
6b 

n Me Bn Me 

9a,b R = P h  60 :40  51% 

10a,b R = CH2OTHP 80 : 20 56% 

(2) 

Switching to an electron withdrawing protecting group on the iodide substituted indole unit did not 

appreciably change the regioselectivity of reaction (eq 3). This supports the proposal that the regiochemistry of 

alkyne insertion, and hence the benzannulation reaction, is dictated by steric considerations and only 

minimally, if at all, on electronic factors of either the indole or the alkyne. 

I M e O O ~ R  R COOMe 

MeOOC'-~-" R 
• ~ + (3) 

Ts Me 10% Pd(PPh3) 4 
1 eq TI2CO3 PhMe Ts Me Ts Me 

6c 11 R =COOMe 57% 

12a,b R=Ph 67:33 88% 
13a,b R=Bu 60:40 58% 

In summary, we have demonstrated that substituted indolocarbazoles can be formed from a new 

palladium catalyzed benzannulation reaction using substrates readily prepared by palladium catalyzed cross 

coupling reactions. This strategy should provide convenient access to indolocarbazole natural products and 

their analogues, and aromatic compounds in general, though regiochemical issues must still be addressed. 
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